Suche
Close this search box.

Zeta und Konsorten

Zeta und Konsorten. Distinktivitätsmaße für die Digitalen Literaturwissenschaften
Fachliche Zuordnung
Projektkategorie
Projektzeitraum
06/01/2020 – laufend
Projektstart: 06/01/2020 – Projektende: laufend

Kurzbeschreibung des Projekts

Das Ziel des Projektes ist, unser Verständnis von quantitativen, vergleichenden Methoden der Textanalyse zu verbessern. Der Schwerpunkt wird auf statistischen Distinktivitätsmaße liegen, die es den Forschern ermöglichen, Merkmale zu extrahieren, die charakteristisch für eine Textsammlung im Vergleich zu einer anderen Textsammlung sind.

Wir wollen unser Verständnis dafür verbessern, wie solche Distinktivitätsmaße funktionieren, wenn sie für mittelgroße bis große literarische Textsammlungen verwendet werden. Wir möchten dies auf empirische, datengestützte Weise tun, indem wir Benchmark-Korpora und verschiedene Evaluierungsstrategien einsetzen sowie eine eingehende Anwendungsstudie zum französischen Gegenwartsroman durchführen. Das daraus resultierende Wissen möchten wir in insbesondere in der Computerlinguistik und den Computational Literary Studies verbreiten.

Projektinhalt

Der Vergleich als methodisches und epistemologisches Paradigma ist in den Geisteswissenschaften tief verankert. Ob in der qualitativen oder quantitativen Forschung – über das Vergleichen lassen sich Ähnlichkeiten und Unterschiede, Affinitäten und Kontraste herausstellen; das Vergleichen schärft das Auge des Betrachters und Analysen gewinnen an Kontur und Aussagekraft. Vor diesem Hintergrund soll die hier beschriebene Forschung unser Verständnis von quantitativen, vergleichenden Analysemethoden zweier oder mehrerer Textsammlungen im Bereich der Digitalen Literaturwissenschaften verbessern. Der Fokus wird dabei auf einem zentralen Verfahren im Bereich der quantitativen, vergleichenden Analysen liegen: statistische Distinktivitätsmaße, die es Forschern ermöglichen, Elemente (z.B. Wortformen oder Wortarten) zu bestimmen, die charakteristisch für eine Textgruppe im Vergleich mit einer anderen Textgruppe sind. In so unterschiedlichen Bereichen wie Information Retrieval, Computerlinguistik oder den Digitalen Literaturwissenschaften ist ein breites Spektrum an statistischen Distinktivitätsmaßen entwickelt worden. Dabei können drei Typen von Maßen unterschieden werden, denen jeweils unterschiedliche Informationen zugrunde liegen.

Beim ersten Typ werden die relativen Häufigkeiten von Merkmalen in jeder der beiden Textgruppen verglichen (bspw. beim log-likelihood-Test). Beim zweiten Typ werden die Verteilungen der Häufigkeiten von Merkmalen in den einzelnen Texten beider Textgruppen ermittelt (bspw. beim t-Test). Beim dritten Typ wird die Dispersion der Merkmale über alle Texte hinweg in jeder Gruppe untersucht, d.h. wie gleichmäßig die Merkmale in jeder Gruppe von Texten verteilt sind (bspw. bei Zeta).

Um ein tieferes Verständnis der verschiedenen Distinktivitätsmaße zu erreichen und Verbesserungen in deren Implementierung und Anwendung vorschlagen zu können, werden wir geeignete Referenzkorpora erstellen und veröffentlichen, ein breites Spektrum an existierenden Distinktivitätsmaßen analysieren und deren statistische Eigenheiten bestimmen und vergleichen sowie sie in einem gemeinsamen konzeptionellen Modell formal darstellen. Basierend auf diesem Modell werden wir diese Maße in einem gemeinsamen Rahmen implementieren; zudem werden wir mehrere Evaluationsstrategien anwenden, um die Eigenschaften und die Leistungsfähigkeit der Maße empirisch zu ermitteln und zu vergleichen. Anschließend werden wir sie in einer ausführlichen Anwendungsstudie auf verschiedene Untergattungen des zeitgenössischen französischen Romans anwenden (auf kanonisierte Romane im Vergleich mit Populärliteratur wie Kriminalromane, Liebesromane und Science- Fiction-Romane). Abschließend werden wir die Hauptergebnisse der Studie in einer akademischen Publikation und in Form eines interaktiven, pädagogischen Webportals verbreiten.

Förderung
Deutsche Forschungsgemeinschaft (DFG)
Kontakt

Universität Trier
Trier Center for Digital Humanities
Prof. Dr. Christof Schöch
E-Mail: schoech@uni-trier.de
Telefon: +49 (0)651-201 3264

Erfahren Sie mehr unter

https://zeta-project.eu/de/

Keli Du (Projektleiter), Dr. Cora Rok, Julia Dudar
Neues Projekt anmelden

Fügen Sie Ihr DH-Forschungsprojekt dem Projektschaufenster hinzu, indem Sie eine kurze Projektbeschreibung über das Webformular einreichen. Geben Sie Projektdaten, eine Kurzbeschreibung, eine Grafik oder Visualisierung sowie eine detaillierte Beschreibung des Projektinhalts mit fachlicher Zuordnung, Adressaten, Mehrwert, Projektverantwortlichen, Finanzierungsinformationen und Laufzeit an.

Weitere Projekte

There is no official English version of this website. We invite you to use your browser plugin for translations.